Characterization of a Two-weighted Vector-valued Inequality for Fractional Maximal Operators
نویسنده
چکیده
We give a characterization of the weights u(·) and v(·) for which the fractional maximal operator Ms is bounded from the weighted Lebesgue spaces Lp(lr, vdx) into Lq(lr, udx) whenever 0 ≤ s < n, 1 < p, r < ∞, and 1 ≤ q < ∞.
منابع مشابه
A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملWeighted Norm Inequalities for Maximally Modulated Singular Integral Operators
We present a framework that yields a variety of weighted and vector-valued estimates for maximally modulated Calderón-Zygmund singular (and maximal singular) integrals from a single a priori weak type unweighted estimate for the maximal modulations of such operators. We discuss two approaches, one based on the good-λ method of Coifman and Fefferman [CF] and an alternative method employing the s...
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملWeighted Estimates for Bilinear Fractional Integral Operators and Their Commutators
In this paper we will prove several weighted estimates for bilinear fractional integral operators and their commutators with BMO functions. We also prove maximal function control theorem for these operators, that is, we prove the weighted Lp norm is bounded by the weighted Lp norm of a natural maximal operator when the weight belongs to A∞. As a corollary we are able to obtain new weighted esti...
متن کاملTwo weight norm inequalities for fractional one-sided maximal and integral operators
In this paper, we give a generalization of Fefferman-Stein inequality for the fractional one-sided maximal operator: Z +∞ −∞ M α (f)(x) w(x) dx ≤ Ap Z +∞ −∞ |f(x)|M αp(w)(x) dx, where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem and weighted norm inequalities for the one-sided fractional integral I α .
متن کامل